Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise A, Question 1

Question:

Find $\frac{d y}{d x}$ for each of the following, leaving your answer in terms of the parameter t :
(a) $x=2 t, y=t^{2}-3 t+2$
(b) $x=3 t^{2}, y=2 t^{3}$
(c) $x=t+3 t^{2}, y=4 t$
(d) $x=t^{2}-2, y=3 t^{5}$
(e) $x=\frac{2}{t}, y=3 t^{2}-2$
(f) $x=\frac{1}{2 t-1}, y=\frac{t^{2}}{2 t-1}$
(g) $x=\frac{2 t}{1+t^{2}}, y=\frac{1-t^{2}}{1+t^{2}}$
(h) $x=t^{2} \mathrm{e}^{t}, y=2 t$
(i) $x=4 \sin 3 t, y=3 \cos 3 t$
(j) $x=2+\sin t, y=3-4 \cos t$
(k) $x=\sec t, y=\tan t$
(1) $x=2 t-\sin 2 t, y=1-\cos 2 t$

Solution:

(a) $x=2 t, y=t^{2}-3 t+2$

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=2, \frac{\mathrm{~d} y}{\mathrm{~d} t}=2 t-3
$$

Using the chain rule

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)}{\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)}=\frac{2 t-3}{2}
$$

(b) $x=3 t^{2}, y=2 t^{3}$

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=6 t, \frac{\mathrm{~d} y}{\mathrm{~d} t}=6 t^{2}
$$

Using the chain rule

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)}{\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)}=\frac{6 t^{2}}{6 t}=t
$$

(c) $x=t+3 t^{2}, y=4 t$

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=1+6 t, \frac{\mathrm{~d} y}{\mathrm{~d} t}=4
$$

$$
\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{1+6 t} \quad \text { (from the chain rule) }
$$

(d) $x=t^{2}-2, y=3 t^{5}$
$\frac{\mathrm{d} x}{\mathrm{~d} t}=2 t, \frac{\mathrm{~d} y}{\mathrm{~d} t}=15 t^{4}$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{15 t^{4}}{2 t}=\frac{15 t^{3}}{2} \quad$ (from the chain rule)
(e) $x=\frac{2}{t}, y=3 t^{2}-2$
$\frac{\mathrm{d} x}{\mathrm{~d} t}=-2 t^{-2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=6 t$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 t}{-2 t^{-2}}=-3 t^{3} \quad$ (from the chain rule)
(f) $x=\frac{1}{2 t-1}, y=\frac{t^{2}}{2 t-1}$

As $x=(2 t-1)^{-1}, \frac{\mathrm{~d} x}{\mathrm{~d} t}=-2(2 t-1)^{-2} \quad$ (from the chain rule)
Use the quotient rule to give

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{(2 t-1)(2 t)-t^{2}(2)}{(2 t-1)^{2}}=\frac{2 t^{2}-2 t}{(2 t-1)^{2}}=\frac{2 t(t-1)}{(2 t-1)^{2}}
$$

Hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)}{\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)}$

$$
\begin{aligned}
& =\frac{2 t(t-1)}{(2 t-1)^{2}} \div-2(2 t-1)^{-2} \\
& =\frac{2 t(t-1)}{(2 t-1)^{2}} \div \frac{-2}{(2 t-1)^{2}} \\
& =\frac{2 t(t-1)}{(2 t-1)^{2}} \times \frac{(2 t-1)^{2}}{-2} \\
& =-t(t-1) \text { or } t(1-t)
\end{aligned}
$$

(g) $x=\frac{2 t}{1+t^{2}}, y=\frac{1-t^{2}}{1+t^{2}}$

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\left(1+t^{2}\right) 2-2 t(2 t)}{\left(1+t^{2}\right)^{2}}=\frac{2-2 t^{2}}{\left(1+t^{2}\right)^{2}}
$$

and

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\left(1+t^{2}\right)(-2 t)-\left(1-t^{2}\right)(2 t)}{\left(1+t^{2}\right)^{2}}=\frac{-4 t}{\left(1+t^{2}\right)^{2}}
$$

Hence

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)}{\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)} \\
& =\frac{-4 t}{\left(1+t^{2}\right)^{2}} \div \frac{2-2 t^{2}}{\left(1+t^{2}\right)^{2}} \\
& =\frac{-4 t}{2\left(1-t^{2}\right)} \\
& =-\frac{2 t}{\left(1-t^{2}\right)} \text { or } \frac{2 t}{t^{2}-1}
\end{aligned}
$$

(h) $x=t^{2} \mathrm{e}^{t}, y=2 t$

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=t^{2} \mathrm{e}^{t}+\mathrm{e}^{t} 2 t \text { (from the product rule) and } \frac{\mathrm{d} y}{\mathrm{~d} t}=2
$$

$$
\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{t^{2} \mathrm{e}^{t}+2 t \mathrm{e}^{t}}=\frac{2}{t \mathrm{e}^{t}(t+2)} \quad \text { (from the chain rule) }
$$

(i) $x=4 \sin 3 t, y=3 \cos 3 t$

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=12 \cos 3 t, \frac{\mathrm{~d} y}{\mathrm{~d} t}=-9 \sin 3 t \\
& \therefore \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-9 \sin 3 t}{12 \cos 3 t}=-\frac{3}{4} \tan 3 t \quad \text { (from the chain rule) }
\end{aligned}
$$

(j) $x=2+\sin t, y=3-4 \cos t$

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\cos t, \frac{\mathrm{~d} y}{\mathrm{~d} t}=4 \sin t
$$

$$
\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 \sin t}{\cos t}=4 \tan t \quad \text { (from the chain rule) }
$$

(k) $x=\sec t, y=\tan t$

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\sec t \tan t, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\sec ^{2} t
$$

Hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sec ^{2} t}{\sec t \tan t}$

$$
\begin{aligned}
& =\frac{\sec t}{\tan t} \\
& =\frac{1}{\cos t} \times \frac{\cos t}{\sin t} \\
& =\frac{1}{\sin t} \\
& =\operatorname{cosec} t
\end{aligned}
$$

(1) $x=2 t-\sin 2 t, y=1-\cos 2 t$

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=2-2 \cos 2 t, \frac{\mathrm{~d} y}{\mathrm{~d} t}=2 \sin 2 t
$$

Hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 \sin 2 t}{2-2 \cos 2 t}$

$$
\begin{aligned}
& =\frac{2 \times 2 \sin t \cos t}{2-2\left(1-2 \sin ^{2} t\right)} \quad \text { (using double angle formulae) } \\
& =\frac{\sin t \cos t}{\sin ^{2} t} \\
& =\frac{\cos t}{\sin t} \\
& =\cot t
\end{aligned}
$$

Heinemann Solutionbank: Core Maths 4 C4
Page 5 of 5
© Pearson Education Ltd 2009

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise A, Question 2

Question:

(a) Find the equation of the tangent to the curve with parametric equations $x=3 t-2 \sin t, y=t^{2}+t \cos t$, at the point P, where $t=\frac{\pi}{2}$.
(b) Find the equation of the tangent to the curve with parametric equations $x=9-t^{2}, y=t^{2}+6 t$, at the point P, where $t=2$.

Solution:

(a) $x=3 t-2 \sin t, y=t^{2}+t \cos t$
$\frac{\mathrm{d} x}{\mathrm{~d} t}=3-2 \cos t, \frac{\mathrm{~d} y}{\mathrm{~d} t}=2 t+(-t \sin t+\cos t)$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 t-t \sin t+\cos t}{3-2 \cos t}$
When $t=\frac{\pi}{2}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\left(\pi-\frac{\pi}{2}\right)}{3}=\frac{\pi}{6}$
\therefore the tangent has gradient $\frac{\pi}{6}$.
When $t=\frac{\pi}{2}, x=\frac{3 \pi}{2}-2$ and $y=\frac{\pi^{2}}{4}$
\therefore the tangent passes through the point $\left(\frac{3 \pi}{2}-2, \frac{\pi^{2}}{4}\right)$
The equation of the tangent is
$y-\frac{\pi^{2}}{4}=\frac{\pi}{6}\left[x-\left(\frac{3 \pi}{2}-2\right)\right]$
$\therefore y-\frac{\pi^{2}}{4}=\frac{\pi}{6} x-\frac{\pi^{2}}{4}+\frac{\pi}{3}$
i.e. $y=\frac{\pi}{6} x+\frac{\pi}{3}$
(b) $x=9-t^{2}, y=t^{2}+6 t$

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=-2 t, \frac{\mathrm{~d} y}{\mathrm{~d} t}=2 t+6 \\
& \therefore \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 t+6}{-2 t}
\end{aligned}
$$

At the point where $t=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{10}{-4}=\frac{-5}{2}$
Also at $t=2, x=5$ and $y=16$.
\therefore the tangent has equation

$$
\begin{aligned}
& y-16=\frac{-5}{2}(x-5) \\
& \therefore 2 y-32=-5 x+25 \\
& \text { i.e. } 2 y+5 x=57
\end{aligned}
$$

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise A, Question 3

Question:

(a) Find the equation of the normal to the curve with parametric equations $x=\mathrm{e}^{t}, y=\mathrm{e}^{t}+\mathrm{e}^{-t}$, at the point P, where $t=0$.
(b) Find the equation of the normal to the curve with parametric equations $x=1-\cos 2 t, y=\sin 2 t$, at the point P, where $t=\frac{\pi}{6}$.

Solution:

(a) $x=\mathrm{e}^{t}, y=\mathrm{e}^{t}+\mathrm{e}^{-t}$
$\frac{\mathrm{d} x}{\mathrm{~d} t}=\mathrm{e}^{t}$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=\mathrm{e}^{t}-\mathrm{e}^{-t}$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{e}^{t}-\mathrm{e}^{-t}}{\mathrm{e}^{t}}$
When $t=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
\therefore gradient of curve is 0
\therefore normal is parallel to the y-axis.
When $t=0, x=1$ and $y=2$
\therefore equation of the normal is $x=1$
(b) $x=1-\cos 2 t, y=\sin 2 t$
$\frac{\mathrm{d} x}{\mathrm{~d} t}=2 \sin 2 t$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=2 \cos 2 t$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 \cos 2 t}{2 \sin 2 t}=\cot 2 t$

When $t=\frac{\pi}{6}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{\tan \frac{\pi}{3}}=\frac{1}{\sqrt{ } 3}$
\therefore gradient of the normal is $-\sqrt{ } 3$
When $t=\frac{\pi}{6}, x=1-\cos \frac{\pi}{3}=\frac{1}{2}$ and $y=\sin \frac{\pi}{3}=\frac{\sqrt{ } 3}{2}$
\therefore equation of the normal is

$$
\begin{aligned}
& y-\frac{\sqrt{ } 3}{2}=-\sqrt{ } 3\left(x-\frac{1}{2}\right) \\
& \text { i.e. } y-\frac{\sqrt{ } 3}{2}=-\sqrt{ } 3 x+\frac{\sqrt{ } 3}{2} \\
& \therefore y+\sqrt{ } 3 x=\sqrt{ } 3
\end{aligned}
$$

© Pearson Education Ltd 2009

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise A, Question 4

Question:

Find the points of zero gradient on the curve with parametric equations $x=$ $\frac{t}{1-t}, y=\frac{t^{2}}{1-t}, t \neq 1$.
You do not need to establish whether they are maximum or minimum points.

Solution:

$x=\frac{t}{1-t}, y=\frac{t^{2}}{1-t}$
Use the quotient rule to give
$\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{(1-t) \times 1-t(-1)}{(1-t)^{2}}=\frac{1}{(1-t)^{2}}$
and
$\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{(1-t) 2 t-t^{2}(-1)}{(1-t)^{2}}=\frac{2 t-t^{2}}{(1-t)^{2}}$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 t-t^{2}}{(1-t)^{2}} \div \frac{1}{(1-t)^{2}}=t(2-t)$
When $\frac{\mathrm{d} y}{\mathrm{~d} x}=0, t=0$ or 2
When $t=0$ then $x=0, y=0$
When $t=2$ then $x=-2, y=-4$
$\therefore(0,0)$ and $(-2,-4)$ are the points of zero gradient.

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise B, Question 1

Question:

Find an expression in terms of x and y for $\frac{\mathrm{d} y}{\mathrm{~d} x}$, given that:
(a) $x^{2}+y^{3}=2$
(b) $x^{2}+5 y^{2}=14$
(c) $x^{2}+6 x-8 y+5 y^{2}=13$
(d) $y^{3}+3 x^{2} y-4 x=0$
(e) $3 y^{2}-2 y+2 x y=x^{3}$
(f) $x=\frac{2 y}{x^{2}-y}$
(g) $(x-y)^{4}=x+y+5$
(h) $\mathrm{e}^{x} y=x \mathrm{e}^{y}$
(i) $\sqrt{(x y)}+x+y^{2}=0$

Solution:

(a) $x^{2}+y^{3}=2$

Differentiate with respect to x :

$$
\begin{aligned}
& 2 x+3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
& \therefore \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-2 x}{3 y^{2}}
\end{aligned}
$$

(b) $x^{2}+5 y^{2}=14$

$$
2 x+10 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0
$$

$$
\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2 x}{10 y}=-\frac{x}{5 y}
$$

(c) $x^{2}+6 x-8 y+5 y^{2}=13$
$2 x+6-8 \frac{\mathrm{~d} y}{\mathrm{~d} x}+10 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
$2 x+6=(8-10 y) \frac{\mathrm{d} y}{\mathrm{~d} x}$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x+6}{8-10 y}=\frac{x+3}{4-5 y}$
(d) $y^{3}+3 x^{2} y-4 x=0$

Differentiate with respect to x :
$3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(3 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \times 6 x\right)-4=0$
$\frac{\mathrm{d} y}{\mathrm{~d} x}\left(3 y^{2}+3 x^{2}\right)=4-6 x y$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4-6 x y}{3\left(x^{2}+y^{2}\right)}$
(e) $3 y^{2}-2 y+2 x y-x^{3}=0$
$6 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \times 2\right)-3 x^{2}=0$
$\frac{\mathrm{d} y}{\mathrm{~d} x}(6 y-2+2 x)=3 x^{2}-2 y$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x^{2}-2 y}{2 x+6 y-2}$
(f) $x=\frac{2 y}{x^{2}-y}$
$\therefore x^{3}-x y=2 y$
i.e. $x^{3}-x y-2 y=0$

Differentiate with respect to x :
$3 x^{2}-\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \times 1\right)-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
$3 x^{2}-y=\frac{\mathrm{d} y}{\mathrm{~d} x}(x+2)$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x^{2}-y}{x+2}$
(g) $(x-y)^{4}=x+y+5$

Differentiate with respect to x :
$4(x-y)^{3}\left(1-\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=1+\frac{\mathrm{d} y}{\mathrm{~d} x}$ (The chain rule was used to differentiate the first
term.)

$$
\begin{aligned}
& \therefore 4(x-y)^{3}-1=\frac{\mathrm{d} y}{\mathrm{~d} x}\left[1+4(x-y)^{3}\right] \\
& \therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4(x-y)^{3}-1}{1+4(x-y)^{3}}
\end{aligned}
$$

(h) $\mathrm{e}^{x} y=x \mathrm{e}^{y}$

Differentiate with respect to x :

$$
\begin{aligned}
& \mathrm{e}^{x} \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \mathrm{e}^{x}=x \mathrm{e}^{y} \frac{\mathrm{dy}}{\mathrm{~d} x}+\mathrm{e}^{y} \times 1 \\
& \mathrm{e}^{x} \frac{\mathrm{~d} y}{\mathrm{~d} x}-x \mathrm{e}^{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\mathrm{e}^{y}-y \mathrm{e}^{x} \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}\left(\mathrm{e}^{x}-x \mathrm{e}^{y}\right)=\mathrm{e}^{y}-y \mathrm{e}^{x} \\
& \therefore \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{e}^{y}-y \mathrm{e}^{x}}{\mathrm{e}^{x}-x \mathrm{e}^{y}}
\end{aligned}
$$

(i) $\sqrt{x y}+x+y^{2}=0$

Differentiate with respect to x :

$$
\frac{1}{2}(x y)-\frac{1}{2}\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \times 1\right)+1+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0
$$

Multiply both sides by $2 \sqrt{x y}$:

$$
\begin{aligned}
& \left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right)+2 \sqrt{x y}+4 y \sqrt{x y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}(x+4 y \sqrt{x y})=-(2 \sqrt{x y}+y) \\
& \therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-(2 \sqrt{x y}+y)}{x+4 y \sqrt{x y}} .
\end{aligned}
$$

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise B, Question 2

Question:

Find the equation of the tangent to the curve with implicit equation $x^{2}+3 x y^{2}-y^{3}=9$ at the point $(2,1)$.

Solution:

$x^{2}+3 x y^{2}-y^{3}=9$
Differentiate with respect to x :
$2 x+\left[3 x\left(2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)+y^{2} \times 3\right]-3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
When $x=2$ and $y=1$
$4+\left(12 \frac{\mathrm{~d} y}{\mathrm{~d} x}+3\right)-3 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
$\therefore 9 \frac{\mathrm{~d} y}{\mathrm{~d} x}=-7$
i.e. $\frac{d y}{d x}=\frac{-7}{9}$
\therefore the gradient of the tangent at $(2,1)$ is $\frac{-7}{9}$.
The equation of the tangent is

$$
\begin{aligned}
& (y-1)=\frac{-7}{9}(x-2) \\
& \therefore 9 y-9=-7 x+14 \\
& \therefore 9 y+7 x=23
\end{aligned}
$$

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise B, Question 3

Question:

Find the equation of the normal to the curve with implicit equation $(x+y)^{3}=x^{2}+y$ at the point $(1,0)$.

Solution:

$$
(x+y)^{3}=x^{2}+y
$$

Differentiate with respect to x :
$3(x+y)^{2}\left(1+\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=2 x+\frac{\mathrm{d} y}{\mathrm{~d} x}$
At the point $(1,0), x=1$ and $y=0$
$\therefore 3\left(1+\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=2+\frac{\mathrm{d} y}{\mathrm{~d} x}$
$\therefore 2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=-1 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-1}{2}$
\therefore The gradient of the normal at $(1,0)$ is 2 .
\therefore the equation of the normal is
$y-0=2(x-1)$
i.e. $y=2 x-2$
© Pearson Education Ltd 2009

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise B, Question 4

Question:

Find the coordinates of the points of zero gradient on the curve with implicit equation $x^{2}+4 y^{2}-6 x-16 y+21=0$.

Solution:

$$
\begin{equation*}
x^{2}+4 y^{2}-6 x-16 y+21=0 \tag{1}
\end{equation*}
$$

Differentiate with respect to x :

$$
\begin{aligned}
& 2 x+8 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-6-16 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
& 8 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-16 \frac{\mathrm{~d} y}{\mathrm{~d} x}=6-2 x \\
& (8 y-16) \frac{\mathrm{d} y}{\mathrm{~d} x}=6-2 x \\
& \therefore \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{6-2 x}{8 y-16}
\end{aligned}
$$

For zero gradient $\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow 6-2 x=0 \Rightarrow x=3$
Substitute $x=3$ into (1) to give

$$
\begin{aligned}
& 9+4 y^{2}-18-16 y+21=0 \\
& \Rightarrow \quad 4 y^{2}-16 y+12=0[\div 4] \\
& \Rightarrow \quad y^{2}-4 y+3=0 \\
& \Rightarrow \quad(y-1)(y-3)=0 \\
& \Rightarrow \quad y=1 \text { or } 3
\end{aligned}
$$

\therefore the coordinates of the points of zero gradient are $(3,1)$ and $(3,3)$.

Solutionbank

Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise C, Question 1

Question:

Find $\frac{d y}{d x}$ for each of the following:
(a) $y=3^{x}$
(b) $y=\left(\frac{1}{2}\right) x$
(c) $y=x a^{x}$
(d) $y=\frac{2^{x}}{x}$

Solution:

(a) $y=3^{x}$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3^{x} \ln 3
$$

(b) $y=\left(\frac{1}{2}\right) x$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(\frac{1}{2}\right){ }^{x} \ln \frac{1}{2}$
(c) $y=x a^{x}$

Use the product rule to give
$\frac{\mathrm{d} y}{\mathrm{~d} x}=x a^{x} \ln a+a^{x} \times 1=a^{x}(x \ln a+1)$
(d) $y=\frac{2^{x}}{x}$

Use the quotient rule to give
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x \times 2^{x} \ln 2-2^{x} \times 1}{x^{2}}=\frac{2^{x}(x \ln 2-1)}{x^{2}}$

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise C, Question 2

Question:

Find the equation of the tangent to the curve $y=2^{x}+2^{-x}$ at the point $(2,4$ $\left.\frac{1}{4}\right)$.

Solution:

$y=2^{x}+2^{-x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2^{x} \ln 2-2^{-x} \ln 2$
When $x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 \ln 2-\frac{1}{4} \ln 2=\frac{15}{4} \ln 2$
\therefore the equation of the tangent at $\left(2,4 \frac{1}{4}\right)$ is
$y-4 \frac{1}{4}=\frac{15}{4} \ln 2(x-2)$
$\therefore 4 y=(15 \ln 2) x+(17-30 \ln 2)$
© Pearson Education Ltd 2009

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise C, Question 3

Question:

A particular radioactive isotope has an activity R millicuries at time t days given by the equation $R=200(0.9)^{t}$. Find the value of $\frac{\mathrm{d} R}{\mathrm{~d} t}$, when $t=8$.

Solution:

$R=200(0.9){ }^{t}$
$\frac{\mathrm{d} R}{\mathrm{~d} t}=200 \times \ln 0.9 \times(0.9)^{t}$
Substitute $t=8$ to give
$\frac{\mathrm{d} R}{\mathrm{~d} t}=-9.07$ (3 s.f.)
© Pearson Education Ltd 2009

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise C, Question 4

Question:

The population of Cambridge was 37000 in 1900 and was about 109000 in 2000. Find an equation of the form $P=P_{0} k^{t}$ to model this data, where t is measured as years since 1900 . Evaluate $\frac{\mathrm{d} P}{\mathrm{~d} t}$ in the year 2000. What does this value represent?

Solution:

$P=P_{0} k^{t}$
When $t=0, P=37000$
$\therefore 37000=P_{0} \times k^{0}=P_{0} \times 1$
$\therefore P_{0}=37000$
$\therefore P=37000(k)^{t}$
When $t=100, P=109000$
$\therefore 109000=37000(k)^{100}$
$\therefore k^{100}=\frac{109000}{37000}$
$\therefore k=100 \sqrt{\frac{109}{37}} \approx 1.01$
$\frac{\mathrm{d} P}{\mathrm{~d} t}=37000 k^{t} \ln k$
When $t=100$
$\frac{\mathrm{d} P}{\mathrm{~d} t}=37000 \times\left(\frac{109}{37}\right) \times \ln k=1000 \times 109 \times \frac{1}{100} \ln \frac{109}{37}$
$=1178$ people per year
Rate of increase of the population during the year 2000.

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise D, Question 1

Question:

Given that $V=\frac{1}{3} \pi r^{3}$ and that $\frac{\mathrm{d} V}{\mathrm{~d} t}=8$, find $\frac{\mathrm{d} r}{\mathrm{~d} t}$ when $r=3$.

Solution:

$V=\frac{1}{3} \pi r^{3}$

$$
\therefore \frac{\mathrm{d} V}{\mathrm{~d} r}=\pi r^{2}
$$

Using the chain rule
$\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} r} \times \frac{\mathrm{d} r}{\mathrm{~d} t}$
$\therefore 8=\pi r^{2} \times \frac{\mathrm{d} r}{\mathrm{~d} t}$
$\therefore \frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{8}{\pi r^{2}}$
When $r=3, \frac{\mathrm{~d} r}{\mathrm{~d} t}=\frac{8}{9 \pi}$
© Pearson Education Ltd 2009

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise D, Question 2

Question:

Given that $A=\frac{1}{4} \pi r^{2}$ and that $\frac{\mathrm{d} r}{\mathrm{~d} t}=6$, find $\frac{\mathrm{d} A}{\mathrm{~d} t}$ when $r=2$.

Solution:

$A=\frac{1}{4} \pi r^{2}$
$\frac{\mathrm{d} A}{\mathrm{~d} r}=\frac{1}{2} \pi r$
Using the chain rule
$\frac{\mathrm{d} A}{\mathrm{~d} t}=\frac{\mathrm{d} A}{\mathrm{~d} r} \times \frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{1}{2} \pi r \times 6=3 \pi r$
When $r=2, \frac{\mathrm{~d} A}{\mathrm{~d} t}=6 \pi$

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise D, Question 3

Question:

Given that $y=x \mathrm{e}^{x}$ and that $\frac{\mathrm{d} x}{\mathrm{~d} t}=5$, find $\frac{\mathrm{d} y}{\mathrm{~d} t}$ when $x=2$.

Solution:

$y=x \mathrm{e}^{x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=x \mathrm{e}^{x}+\mathrm{e}^{x} \times 1$
Using the chain rule
$\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}=\mathrm{e}^{x}(x+1) \times 5$
When $x=2, \frac{\mathrm{~d} y}{\mathrm{~d} t}=15 \mathrm{e}^{2}$
© Pearson Education Ltd 2009

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise D, Question 4

Question:

Given that $r=1+3 \cos \theta$ and that $\frac{\mathrm{d} \theta}{\mathrm{d} t}=3$, find $\frac{\mathrm{d} r}{\mathrm{~d} t}$ when $\theta=\frac{\pi}{6}$.

Solution:

$r=1+3 \cos \theta$
$\frac{\mathrm{d} r}{\mathrm{~d} \theta}=-3 \sin \theta$
Using the chain rule
$\frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{\mathrm{d} r}{\mathrm{~d} \theta} \times \frac{\mathrm{d} \theta}{\mathrm{d} t}=-3 \sin \theta \times 3=-9 \sin \theta$
When $\theta=\frac{\pi}{6}, \frac{\mathrm{~d} r}{\mathrm{~d} t}=\frac{-9}{2}$

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise E, Question 1

Question:

In a study of the water loss of picked leaves the mass M grams of a single leaf was measured at times t days after the leaf was picked. It was found that the rate of loss of mass was proportional to the mass M of the leaf.
Write down a differential equation for the rate of change of mass of the leaf.

Solution:

$\frac{\mathrm{d} M}{\mathrm{~d} t}$ represents rate of change of mass.
$\therefore \frac{\mathrm{d} M}{\mathrm{~d} t} \propto-M$, as rate of loss indicates a negative quantity.
$\therefore \frac{\mathrm{d} M}{\mathrm{~d} t}=-k M$, where k is the positive constant of proportionality.

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise E, Question 2

Question:

A curve C has equation $y=\mathrm{f}(x), y>0$. At any point P on the curve, the gradient of C is proportional to the product of the x and the y coordinates of P.
The point A with coordinates $(4,2)$ is on C and the gradient of C at A is $\frac{1}{2}$.
Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x y}{16}$.

Solution:

The gradient of the curve is given by $\frac{d y}{d x}$.
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x} \propto x y \quad$ (which is the product of x and y)
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=k x y$, where k is a constant of proportion.
When $x=4, y=2$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}$
$\therefore \frac{1}{2}=k \times 4 \times 2$
$\therefore k=\frac{1}{16}$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x y}{16}$

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise E, Question 3

Question:

Liquid is pouring into a container at a constant rate of $30 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. At time t seconds liquid is leaking from the container at a rate of $\frac{2}{15} V \mathrm{~cm}^{3} \mathrm{~s}^{-1}$, where $V \mathrm{~cm}^{3}$ is the volume of liquid in the container at that time.
Show that $-15 \frac{\mathrm{~d} V}{\mathrm{~d} t}=2 \mathrm{~V}-450$

Solution:

Let the rate of increase of the volume of liquid be $\frac{\mathrm{d} V}{\mathrm{~d} t}$.
Then $\frac{\mathrm{d} V}{\mathrm{~d} t}=30-\frac{2}{15} V$
Multiply both sides by -15 :
$-15 \frac{\mathrm{~d} V}{\mathrm{~d} t}=2 V-450$
© Pearson Education Ltd 2009

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise E, Question 4

Question:

An electrically charged body loses its charge Q coulombs at a rate, measured in coulombs per second, proportional to the charge Q.
Write down a differential equation in terms of Q and t where t is the time in seconds since the body started to lose its charge.

Solution:

The rate of change of the charge is $\frac{\mathrm{d} Q}{\mathrm{~d} t}$.
$\therefore \frac{\mathrm{d} Q}{\mathrm{~d} t} \propto-Q$, as the body is losing charge the negative sign is required.
$\therefore \frac{\mathrm{d} Q}{\mathrm{~d} t}=-k Q$, where k is the positive constant of proportion.

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise E, Question 5

Question:

The ice on a pond has a thickness $x \mathrm{~mm}$ at a time t hours after the start of freezing. The rate of increase of x is inversely proportional to the square of x. Write down a differential equation in terms of x and t.

Solution:

The rate of increase of x is $\frac{\mathrm{d} x}{\mathrm{~d} t}$.
$\therefore \frac{\mathrm{d} x}{\mathrm{~d} t} \propto \frac{1}{x^{2}}$, as there is an inverse proportion.
$\therefore \frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{k}{x^{2}}$, where k is the constant of proportion.

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise E, Question 6

Question:

In another pond the amount of pondweed (P) grows at a rate proportional to the amount of pondweed already present in the pond. Pondweed is also removed by fish eating it at a constant rate of Q per unit of time.
Write down a differential equation relating P and t, where t is the time which has elapsed since the start of the observation.

Solution:

The rate of increase of pondweed is $\frac{\mathrm{d} P}{\mathrm{~d} t}$.
This is proportional to P.
$\therefore \frac{\mathrm{d} P}{\mathrm{~d} t} \propto P$
$\therefore \frac{\mathrm{d} P}{\mathrm{~d} t}=k P$, where k is a constant.
But also pondweed is removed at a rate Q

$$
\therefore \frac{\mathrm{d} P}{\mathrm{~d} t}=k P-Q
$$

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise E, Question 7

Question:

A circular patch of oil on the surface of some water has radius r and the radius increases over time at a rate inversely proportional to the radius.
Write down a differential equation relating r and t, where t is the time which has elapsed since the start of the observation.

Solution:

The rate of increase of the radius is $\frac{\mathrm{d} r}{\mathrm{~d} t}$.
$\therefore \frac{\mathrm{d} r}{\mathrm{~d} t} \propto \frac{1}{r}$, as it is inversely proportional to the radius.
$\therefore \frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{k}{r}$, where k is the constant of proportion.

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise E, Question 8

Question:

A metal bar is heated to a certain temperature, then allowed to cool down and it is noted that, at time t, the rate of loss of temperature is proportional to the difference in temperature between the metal bar, θ, and the temperature of its surroundings θ_{0}.
Write down a differential equation relating θ and t.

Solution:

The rate of change of temperature is $\frac{\mathrm{d} \theta}{\mathrm{d} t}$.
$\therefore \frac{\mathrm{d} \theta}{\mathrm{d} t} \propto-\left(\theta-\theta_{0}\right)$ The rate of loss indicates the negative sign.
$\therefore \frac{\mathrm{d} \theta}{\mathrm{d} t}=-k\left(\theta-\theta_{0}\right)$, where k is the positive constant of proportion.

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise E, Question 9

Question:

Fluid flows out of a cylindrical tank with constant cross section. At time t minutes, $t>0$, the volume of fluid remaining in the tank is $V \mathrm{~m}^{3}$. The rate at which the fluid flows in $\mathrm{m}^{3} \mathrm{~min}^{-1}$ is proportional to the square root of V. Show that the depth h metres of fluid in the tank satisfies the differential equation $\frac{\mathrm{d} h}{\mathrm{~d} t}=-k \sqrt{ } h$, where k is a positive constant.

Solution:

Let the rate of flow of fluid be $\frac{-\mathrm{d} V}{\mathrm{~d} t}$, as fluid is flowing out of the tank, and the volume left in the tank is decreasing.

$$
\therefore \frac{-\mathrm{d} V}{\mathrm{~d} t} \propto V V
$$

$\therefore \frac{\mathrm{d} V}{\mathrm{~d} t}=-k^{\prime} \sqrt{ } V$, where k^{\prime} is a positive constant.
But $V=A h$, where A is the constant cross section.

$$
\therefore \frac{\mathrm{d} V}{\mathrm{~d} h}=A
$$

Use the chain rule to find $\frac{\mathrm{d} h}{\mathrm{~d} t}$:

$$
\begin{aligned}
& \frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} h} \times \frac{\mathrm{d} h}{\mathrm{~d} t} \\
& \therefore \frac{\mathrm{~d} h}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} t} \div \frac{\mathrm{d} V}{\mathrm{~d} h}=\frac{-k^{\prime} V V}{A}
\end{aligned}
$$

But $V=A h$,
$\therefore \frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{-k \sqrt{A h}}{A}=\left(\frac{-k^{\prime}}{\sqrt{ } A}\right) \sqrt{ } h=-k \sqrt{ } h$, where $\frac{k^{\prime}}{\sqrt{A}}$ is a positive constant.

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise E, Question 10

Question:

At time t seconds the surface area of a cube is $A \quad \mathrm{~cm}^{2}$ and the volume is $V \mathrm{~cm}^{3}$.
The surface area of the cube is expanding at a constant rate $2 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$.
Show that $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{1}{2} V^{\frac{1}{3}}$.

Solution:

Rate of expansion of surface area is $\frac{\mathrm{d} A}{\mathrm{~d} t}$.
Need $\frac{\mathrm{d} V}{\mathrm{~d} t}$ so use the chain rule.
$\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} A} \times \frac{\mathrm{d} A}{\mathrm{~d} t}$
As $\frac{\mathrm{d} A}{\mathrm{~d} t}=2, \frac{\mathrm{~d} V}{\mathrm{~d} t}=2 \frac{\mathrm{~d} V}{\mathrm{~d} A}$ or $2 \div\left(\frac{\mathrm{d} A}{\mathrm{~d} V}\right)$
Let the cube have edge of length $x \mathrm{~cm}$.
Then $V=x^{3}$ and $A=6 x^{2}$.
Eliminate x to give $A=6 V^{\frac{2}{3}}$

$$
\therefore \frac{\mathrm{d} A}{\mathrm{~d} V}=4 V^{\frac{-1}{3}}
$$

From (1) $\quad \frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{2}{4 V^{-\frac{1}{3}}}=\frac{2 V^{\frac{1}{3}}}{4}=\frac{1}{2} V^{\frac{1}{3}}$

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise E, Question 11

Question:

An inverted conical funnel is full of salt. The salt is allowed to leave by a small hole in the vertex. It leaves at a constant rate of $6 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.
Given that the angle of the cone between the slanting edge and the vertical is 30 degrees, show that the volume of the salt is $\frac{1}{9} \pi h^{3}$, where h is the height of salt at time t seconds.
Show that the rate of change of the height of the salt in the funnel is inversely proportional to h^{2}. Write down the differential equation relating h and t.

Solution:

Use $V=\frac{1}{3} \pi r^{2} h$
As $\tan 30^{\circ}=\frac{r}{h}$
$\therefore r=h \tan 30^{\circ}=\frac{h}{\sqrt{3}}$
$\therefore V=\frac{1}{3} \pi\left(\frac{h^{2}}{3}\right) \times h=\frac{1}{9} \pi h^{3}$
It is given that $\frac{\mathrm{d} V}{\mathrm{~d} t}=-6$.
To find $\frac{\mathrm{d} h}{\mathrm{~d} t}$ use the chain rule:

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} t} \times \frac{\mathrm{d} h}{\mathrm{~d} V}=\frac{\mathrm{d} V}{\mathrm{~d} t} \div \frac{\mathrm{d} V}{\mathrm{~d} h}
$$

From (1) $\frac{\mathrm{d} V}{\mathrm{~d} h}=\frac{1}{3} \pi h^{2}$
$\therefore \frac{\mathrm{d} h}{\mathrm{~d} t}=-6 \div \frac{1}{3} \pi h^{2}$
$\therefore \frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{-18}{\pi h^{2}}$
© Pearson Education Ltd 2009

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise F, Question 1

Question:

The curve C is given by the equations
$x=4 t-3, y=\frac{8}{t^{2}}, t>0$
where t is a parameter.
At $A, t=2$. The line l is the normal to C at A.
(a) Find $\frac{d y}{d x}$ in terms of t.
(b) Hence find an equation of l. \boldsymbol{E}

Solution:

(a) $x=4 t-3, y=\frac{8}{t^{2}}=8 t^{-2}$

$$
\therefore \frac{\mathrm{d} x}{\mathrm{~d} t}=4 \text { and } \frac{\mathrm{d} y}{\mathrm{~d} t}=-16 t^{-3}
$$

$$
\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-16 t^{-3}}{4}=\frac{-4}{t^{3}}
$$

(b) When $t=2$ the curve has gradient $\frac{-4}{8}=-\frac{1}{2}$.
\therefore the normal has gradient 2 .
Also the point A has coordinates $(5,2)$
\therefore the equation of the normal is

$$
\begin{aligned}
& y-2=2(x-5) \\
& \text { i.e. } y=2 x-8
\end{aligned}
$$

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise F, Question 2

Question:

The curve C is given by the equations $x=2 t, y=t^{2}$, where t is a parameter. Find an equation of the normal to C at the point P on C where $t=3$. .

Solution:

$x=2 t, y=t^{2}$
$\frac{\mathrm{d} x}{\mathrm{~d} t}=2, \frac{\mathrm{~d} y}{\mathrm{~d} t}=2 t$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 t}{2}=t$
When $t=3$ the gradient of the curve is 3 .
\therefore the gradient of the normal is $-\frac{1}{3}$.
Also at the point P where $t=3$, the coordinates are $(6,9)$.
\therefore the equation of the normal is

$$
\begin{aligned}
& y-9=-\frac{1}{3}(x-6) \\
& \text { i.e. } 3 y-27=-x+6 \\
& \therefore 3 y+x=33
\end{aligned}
$$

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise F, Question 3

Question:

The curve C has parametric equations
$x=t^{3}, y=t^{2}, t>0$
Find an equation of the tangent to C at $A(1,1)$. \boldsymbol{E}

Solution:

$x=t^{3}, y=t^{2}$
$\frac{\mathrm{d} x}{\mathrm{~d} t}=3 t^{2}$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=2 t$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 t}{3 t^{2}}=\frac{2}{3 t}$
At the point $(1,1)$ the value of t is 1 .
\therefore the gradient of the curve is $\frac{2}{3}$, which is also the gradient of the tangent.
\therefore the equation of the tangent is
$y-1=\frac{2}{3}(x-1)$
i.e. $y=\frac{2}{3} x+\frac{1}{3}$
© Pearson Education Ltd 2009

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise F, Question 4

Question:

A curve C is given by the equations
$x=2 \cos t+\sin 2 t, y=\cos t-2 \sin 2 t, 0<t<\pi$ where t is a parameter.
(a) Find $\frac{\mathrm{d} x}{\mathrm{~d} t}$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}$ in terms of t.
(b) Find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point P on C where $t=\frac{\pi}{4}$.
(c) Find an equation of the normal to the curve at P. \boldsymbol{E}

Solution:

(a) $x=2 \cos t+\sin 2 t, y=\cos t-2 \sin 2 t$
$\frac{\mathrm{d} x}{\mathrm{~d} t}=-2 \sin t+2 \cos 2 t, \frac{\mathrm{~d} y}{\mathrm{~d} t}=-\sin t-4 \cos 2 t$
(b) $\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-\sin t-4 \cos 2 t}{-2 \sin t+2 \cos 2 t}$

When $t=\frac{\pi}{4}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\frac{-1}{\sqrt{2}-0}}{\frac{-2}{\sqrt{2}}+0}=\frac{1}{2}$
(c) \therefore the gradient of the normal at the point P, where $t=\frac{\pi}{4}$, is -2 .

The coordinates of P are found by substituting $t=\frac{\pi}{4}$ into the parametric equations, to give

$$
x=\frac{2}{\sqrt{ } 2}+1, y=\frac{1}{\sqrt{ } 2}-2
$$

\therefore the equation of the normal is

$$
y-\left(\frac{1}{\sqrt{2}}-2\right)=-2\left[x-\left(\frac{2}{\sqrt{2}}+1\right)\right]
$$

$$
\begin{aligned}
& \text { i.e. } y-\frac{1}{\sqrt{ } 2}+2=-2 x+\frac{4}{\sqrt{ } 2}+2 \\
& \therefore y+2 x=\frac{5 \sqrt{ } 2}{2}
\end{aligned}
$$

© Pearson Education Ltd 2009

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise F, Question 5

Question:

A curve is given by $x=2 t+3, y=t^{3}-4 t$, where t is a parameter. The point A has parameter $t=-1$ and the line l is the tangent to C at A. The line l also cuts the curve at B.
(a) Show that an equation for l is $2 y+x=7$.
(b) Find the value of t at B. (

Solution:

(a) $x=2 t+3, y=t^{3}-4 t$

At point $A, t=-1$.
\therefore the coordinates of the point A are $(1,3)$
$\frac{\mathrm{d} x}{\mathrm{~d} t}=2$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=3 t^{2}-4$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 t^{2}-4}{2}$
At the point $A, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{2}$
\therefore the gradient of the tangent at A is $-\frac{1}{2}$.
\therefore the equation of the tangent at A is
$y-3=-\frac{1}{2}(x-1)$
i.e. $2 y-6=-x+1$
$\therefore 2 y+x=7$
(b) This line cuts the curve at the point B.
$\therefore 2\left(t^{3}-4 t\right)+(2 t+3)=7$ gives the values of t at A and B.
i.e. $2 t^{3}-6 t-4=0$

At $A, t=-1$
$\therefore(t+1)$ is a root of this equation

$$
\begin{aligned}
& 2 t^{3}-6 t-4=(t+1)\left(2 t^{2}-2 t-4\right)=(t+1)(t+1) \\
& 2 t-4)=2(t+1)^{2}(t-2)
\end{aligned}
$$

So when the line meets the curve, $t=-1$ (repeated root because the line touches the curve) or $t=2$.
\therefore at the point $B, t=2$.
© Pearson Education Ltd 2009

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise F, Question 6

Question:

A Pancho car has value $£ V$ at time t years. A model for V assumes that the rate of decrease of V at time t is proportional to V. Form an appropriate differential equation for V. \boldsymbol{E}

Solution:

$\frac{\mathrm{d} V}{\mathrm{~d} t}$ is the rate of change of V.
$\frac{\mathrm{d} V}{\mathrm{~d} t} \propto-V$, as a decrease indicates a negative quantity.
$\therefore \frac{\mathrm{d} V}{\mathrm{~d} t}=-k V$, where k is a positive constant of proportionality.

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise F, Question 7

Question:

The curve shown has parametric equations
$x=5 \cos \theta, y=4 \sin \theta, 0 \leq \theta<2 \pi$

(a) Find the gradient of the curve at the point P at which $\theta=\frac{\pi}{4}$.
(b) Find an equation of the tangent to the curve at the point P.
(c) Find the coordinates of the point R where this tangent meets the x-axis. \boldsymbol{E}

Solution:

(a) $x=5 \cos \theta, y=4 \sin \theta$

$$
\frac{\mathrm{d} x}{\mathrm{~d} \theta}=-5 \sin \theta \text { and } \frac{\mathrm{d} y}{\mathrm{~d} \theta}=4 \cos \theta
$$

$$
\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-4 \cos \theta}{5 \sin \theta}
$$

At the point P, where $\theta=\frac{\pi}{4}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-4}{5}$.
(b) At the point $P, x=\frac{5}{\sqrt{2}}$ and $y=\frac{4}{\sqrt{2}}$.
\therefore the equation of the tangent at P is

$$
\begin{aligned}
& y-\frac{4}{\sqrt{ } 2}=\frac{-4}{5}\left(x-\frac{5}{\sqrt{ } 2}\right) \\
& \text { i.e. } y-\frac{4}{\sqrt{ } 2}=\frac{-4}{5} x+\frac{4}{\sqrt{2}}
\end{aligned}
$$

$\therefore y=\frac{-4}{5} x+\frac{8}{\sqrt{2}}$
Multiply equation by 5 and rationalise the denominator of the surd: $5 y+4 x=20 \sqrt{ } 2$
(c) The tangent meets the x-axis when $y=0$.

$$
\therefore x=5 \sqrt{ } 2 \text { and } R \text { has coordinates }(5 \sqrt{ } 2,0) .
$$

© Pearson Education Ltd 2009

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise F, Question 8

Question:

The curve C has parametric equations
$x=4 \cos 2 t, y=3 \sin t,-\frac{\pi}{2}<t<\frac{\pi}{2}$
A is the point $\left(2,1 \frac{1}{2}\right)$, and lies on C.
(a) Find the value of t at the point A.
(b) Find $\frac{d y}{d x}$ in terms of t.
(c) Show that an equation of the normal to C at A is $6 y-16 x+23=0$.

The normal at A cuts C again at the point B.
(d) Find the y-coordinate of the point B.

E

Solution:

(a) $x=4 \cos 2 t$ and $y=3 \sin t$
A is the point $\left(2,1 \frac{1}{2}\right)$ and so
$4 \cos 2 t=2$ and $3 \sin t=1 \frac{1}{2}$
$\therefore \cos 2 t=\frac{1}{2}$ and $\sin t=\frac{1}{2}$
As $-\frac{\pi}{2}<t<\frac{\pi}{2}, t=\frac{\pi}{6}$ at the point A.
(b) $\frac{\mathrm{d} x}{\mathrm{~d} t}=-8 \sin 2 t$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=3 \cos t$

$$
\begin{aligned}
\therefore \frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{3 \cos t}{-8 \sin 2 t} \\
& =\frac{-3 \cos t}{16 \sin t \cos t} \quad \text { (using the double angle formula) }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-3}{16 \sin t} \\
& =\frac{-3}{16} \operatorname{cosec} t
\end{aligned}
$$

(c) When $t=\frac{\pi}{6}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-3}{8}$
\therefore the gradient of the normal at the point A is $\frac{8}{3}$.
\therefore the equation of the normal is
$y-1 \frac{1}{2}=\frac{8}{3}(x-2)$
Multiply equation by 6 :
$6 y-9=16 x-32$
$\therefore 6 y-16 x+23=0$
(d) The normal cuts the curve when
$6(3 \sin t)-16(4 \cos 2 t)+23=0$
$\therefore 18 \sin t-64 \cos 2 t+23=0$.
$\therefore 18 \sin t-64\left(1-2 \sin ^{2} t\right)+23=0 \quad$ (using the double angle
formula)
$\therefore 128 \sin ^{2} t+18 \sin t-41=0$
But $\sin t=\frac{1}{2}$ is one solution of this equation, as point A lies on the line and on the curve.
$\therefore 128 \sin ^{2} t+18 \sin t-41=(2 \sin t-1)(64 \sin t+41)$
$\therefore(2 \sin t-1)(64 \sin t+41)=0$
\therefore at point $B, \sin t=\frac{-41}{64}$
\therefore the y coordinate of point B is $\frac{-123}{64}$.

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise F, Question 9

Question:

The diagram shows the curve C with parametric equations
$x=a \sin ^{2} t, y=a \cos t, 0 \leq t \leq \frac{1}{2} \pi$
where a is a positive constant. The point P lies on C and has coordinates $\left.\frac{3}{4} a, \quad \frac{1}{2} a\right)$.

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, giving your answer in terms of t.
(b) Find an equation of the tangent at P to C.

E

Solution:

(a) $x=a \sin ^{2} t, y=a \cos t$

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=2 a \sin t \cos t \text { and } \frac{\mathrm{d} y}{\mathrm{~d} t}=-a \sin t \\
& \therefore \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-a \sin t}{2 a \sin t \cos t}=\frac{-1}{2 \cos t}=\frac{-1}{2} \sec t
\end{aligned}
$$

(b) P is the point $\left(\frac{3}{4} a, \frac{1}{2} a\right)$ and lies on the curve.

$$
\begin{aligned}
& \therefore a \sin ^{2} t=\frac{3}{4} a \text { and } a \cos t=\frac{1}{2} a \\
& \therefore \sin t= \pm \frac{\sqrt{ } 3}{2} \text { and } \cos t=\frac{1}{2} \text { and } 0 \leq t \leq \frac{1}{2} \pi \\
& \therefore t=\frac{\pi}{3}
\end{aligned}
$$

\therefore the gradient of the curve at point P is $-\frac{1}{2} \sec \frac{\pi}{3}=-1$.
The equation of the tangent at P is

$$
\begin{aligned}
& y-\frac{1}{2} a=-1\left(x-\frac{3}{4} a\right) \\
& \therefore y+x=\frac{1}{2} a+\frac{3}{4} a
\end{aligned}
$$

Multiply equation by 4 to give $4 y+4 x=5 a$

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise F, Question 10

Question:

This graph shows part of the curve C with parametric equations
$x=(t+1)^{2}, y=\frac{1}{2} t^{3}+3, t \geq-1$
P is the point on the curve where $t=2$. The line l is the normal to C at P.
Find the equation of l.

E

Solution:

$x=(t+1)^{2}, y=\frac{1}{2} t^{3}+3$
$\frac{\mathrm{d} x}{\mathrm{~d} t}=2(t+1)$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{3}{2} t^{2}$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(\frac{3}{2} t^{2}\right)}{2(t+1)}=\frac{3 t^{2}}{4(t+1)}$

When $t=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{3 \times 4}{4 \times 3}=1$
The gradient of the normal at the point P where $t=2$, is -1 .
The coordinates of P are $(9,7)$.
\therefore the equation of the normal is
$y-7=-1(x-9)$
i.e. $y-7=-x+9$

Heinemann Solutionbank: Core Maths 4 C4
Page 2 of 2
$\therefore y+x=16$
© Pearson Education Ltd 2009

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise F, Question 11

Question:

The diagram shows part of the curve C with parametric equations
$x=t^{2}, y=\sin 2 t, t \geq 0$
The point A is an intersection of C with the x-axis.

(a) Find, in terms of π, the x-coordinate of A.
(b) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of $t, t>0$.
(c) Show that an equation of the tangent to C at A is $4 x+2 \pi y=\pi^{2}$.

E

Solution:

(a) $x=t^{2}$ and $y=\sin 2 t$

At the point $A, y=0$.
$\therefore \sin 2 t=0$
$\therefore 2 t=\pi$
$\therefore t=\frac{\pi}{2}$
The point A is $\left(\frac{\pi^{2}}{4}, 0\right)$
(b) $\frac{\mathrm{d} x}{\mathrm{~d} t}=2 t$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=2 \cos 2 t$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\cos 2 t}{t}$
(c) At point $A, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-1}{\left(\frac{\pi}{2}\right)}=\frac{-2}{\pi}$

$$
\left(\frac{\pi}{2}\right)
$$

\therefore the gradient of the tangent at A is $\frac{-2}{\pi}$.
\therefore the equation of the tangent at A is

$$
\begin{aligned}
& y-0=\frac{-2}{\pi}\left(x-\frac{\pi^{2}}{4}\right) \\
& \text { i.e. } y=\frac{-2 x}{\pi}+\frac{\pi}{2}
\end{aligned}
$$

Multiply equation by 2π to give

$$
2 \pi y+4 x=\pi^{2}
$$

© Pearson Education Ltd 2009

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise F, Question 12

Question:

Find the gradient of the curve with equation
$5 x^{2}+5 y^{2}-6 x y=13$
at the point $(1,2)$.

E

Solution:

$5 x^{2}+5 y^{2}-6 x y=13$
Differentiate implicitly with respect to x :
$10 x+10 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-\left(6 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 y\right)=0$
$\therefore \frac{d y}{d x}(10 y-6 x)+10 x-6 y=0$
At the point $(1,2)$
$\frac{\mathrm{d} y}{\mathrm{~d} x}(14)+10-12=0$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{14}=\frac{1}{7}$

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise F, Question 13

Question:

Given that $\mathrm{e}^{2 x}+\mathrm{e}^{2 y}=x y$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.

E

Solution:

$\mathrm{e}^{2 x}+\mathrm{e}^{2 y}=x y$
Differentiate with respect to x :
$2 \mathrm{e}^{2 x}+2 \mathrm{e}^{2 y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \times 1$
$\therefore 2 \mathrm{e}^{2 y} \frac{\mathrm{~d} y}{\mathrm{~d} x}-x \frac{\mathrm{~d} y}{\mathrm{~d} x}=y-2 \mathrm{e}^{2 x}$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}\left(2 \mathrm{e}^{2 y}-x\right)=y-2 \mathrm{e}^{2 x}$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y-2 \mathrm{e}^{2 x}}{2 \mathrm{e}^{2 y}-x}$

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise F, Question 14

Question:

Find the coordinates of the turning points on the curve $y^{3}+3 x y^{2}-x^{3}=3$.

E

Solution:

$$
y^{3}+3 x y^{2}-x^{3}=3
$$

Differentiate with respect to x :

$$
\begin{aligned}
& 3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(3 x \times 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}+y^{2} \times 3\right)-3 x^{2}=0 \\
& \therefore \frac{\mathrm{~d} y}{\mathrm{~d} x}\left(3 y^{2}+6 x y\right)=3 x^{2}-3 y^{2} \\
& \therefore \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{3\left(x^{2}-y^{2}\right)}{3 y(y+2 x)}=\frac{x^{2}-y^{2}}{y(y+2 x)}
\end{aligned}
$$

When $\frac{\mathrm{d} y}{\mathrm{~d} x}=0, x^{2}=y^{2}$, i.e. $x= \pm y$
When $x=+y, y^{3}+3 y^{3}-y^{3}=3 \quad \Rightarrow \quad 3 y^{3}=3 \quad \Rightarrow \quad y=1$ and $x=1$
When $x=-y, y^{3}-3 y^{3}+y^{3}=3 \quad \Rightarrow \quad-y^{3}=3 \quad \Rightarrow \quad y=\sqrt[3]{(-3)}$ and $x=-\sqrt[3]{(-3)}$
\therefore the coordinates are $(1,1)$ and $(-\sqrt[3]{(-3)}, \sqrt[3]{(-3)})$.

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise F, Question 15

Question:

Given that $y(x+y)=3$, evaluate $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $y=1$.

E

Solution:

$y(x+y)=3$
$\therefore y x+y^{2}=3$
Differentiate with respect to x :
$\left(y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
When $y=1,1(x+1)=3 \quad$ (from original equation)
$\therefore x=2$
Substitute into (1):
$1+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
$\therefore 4 \frac{\mathrm{~d} y}{\mathrm{~d} x}=-1$
i.e. $\frac{d y}{d x}=\frac{-1}{4}$
© Pearson Education Ltd 2009

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise F, Question 16

Question:

(a) If $(1+x)(2+y)=x^{2}+y^{2}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(b) Find the gradient of the curve $(1+x)(2+y)=x^{2}+y^{2}$ at each of the two points where the curve meets the y-axis.
(c) Show also that there are two points at which the tangents to this curve are parallel to the y-axis.

E

Solution:

(a) $(1+x)(2+y)=x^{2}+y^{2}$

Differentiate with respect to x :

$$
\begin{aligned}
& (1+x)\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)+(2+y)(1)=2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
& \therefore(1+x-2 y) \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-y-2 \\
& \therefore \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 x-y-2}{1+x-2 y}
\end{aligned}
$$

(b) When the curve meets the y-axis, $x=0$.

Put $x=0$ in original equation $(1+x)(2+y)=x^{2}+y^{2}$.
Then $2+y=y^{2}$
i.e. $y^{2}-y-2=0$
$\Rightarrow \quad(y-2)(y+1)=0$
$\therefore y=2$ or $y=-1$ when $x=0$
At $(0,2), \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-4}{-3}=\frac{4}{3}$
At $(0,-1), \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-1}{3}$
(c) When the tangent is parallel to the y-axis it has infinite gradient and as

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x-y-2}{1+x-2 y}
$$

So $1+x-2 y=0$
Substitute $1+x=2 y$ into the equation of the curve:
$2 y(2+y)=(2 y-1)^{2}+y^{2}$
$2 y^{2}+4 y=4 y^{2}-4 y+1+y^{2}$
$3 y^{2}-8 y+1=0$
$y=\frac{8 \pm \sqrt{64-12}}{6}=\frac{4 \pm \sqrt{13}}{3}$
When $y=\frac{4+\sqrt{13}}{3}, x=\frac{5+2 \sqrt{13}}{3}$
When $y=\frac{4-\sqrt{13}}{3}, x=\frac{5-2 \sqrt{13}}{3}$
\therefore there are two points at which the tangents are parallel to the y-axis.
They are $\left(\frac{5+2 \sqrt{13}}{3}, \frac{4+\sqrt{13}}{3}\right)$ and $\left(\frac{5-2 \sqrt{13}}{3}, \frac{4-\sqrt{13}}{3}\right)$.

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise F, Question 17

Question:

A curve has equation $7 x^{2}+48 x y-7 y^{2}+75=0 . A$ and B are two distinct points on the curve and at each of these points the gradient of the curve is equal to $\frac{2}{11}$.
Use implicit differentiation to show that $x+2 y=0$ at the points A and B.

E

Solution:

$7 x^{2}+48 x y-7 y^{2}+75=0$
Differentiate with respect to x (implicit differentiation):
$14 x+\left(48 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+48 y\right)-14 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{11}$

$$
\therefore 14 x+48 x \times \frac{2}{11}+48 y-14 y \times \frac{2}{11}=0
$$

Multiply equation by 11 , then $154 x+96 x+528 y-28 y=0$
$\therefore 250 x+500 y=0$
i.e. $x+2 y=0$, after division by 250 .
© Pearson Education Ltd 2009

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise F, Question 18

Question:

Given that $y=x^{x}, x>0, y>0$, by taking logarithms show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{x}(1+\ln x)$

E

Solution:

$y=x^{x}$
Take natural logs of both sides:
$\ln y=\ln x^{x}$
$\therefore \ln y=x \ln x \quad$ Property of $\ln s$
Differentiate with respect to x :
$\frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=x \times \frac{1}{x}+\ln x \times 1$
$\frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=1+\ln x$

$$
\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=y(1+\ln x)
$$

But $y=x^{x}$

$$
\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=x^{x}(1+\ln x)
$$

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise F, Question 19

Question:

(a) Given that $x=2^{t}$, by using logarithms prove that
$\frac{\mathrm{d} x}{\mathrm{~d} t}=2^{t} \ln 2$
A curve C has parametric equations $x=2^{t}, y=3 t^{2}$. The tangent to C at the point with coordinates $(2,3)$ cuts the x-axis at the point P.
(b) Find $\frac{d y}{d x}$ in terms of t.
(c) Calculate the x-coordinate of P, giving your answer to 3 decimal places.

E

Solution:

(a) Given $x=2^{t}$

Take natural logs of both sides:
$\ln x=\ln 2^{t}=t \ln 2$
Differentiate with respect to t :
$\frac{1}{x} \frac{\mathrm{~d} x}{\mathrm{~d} t}=\ln 2$
$\therefore \frac{\mathrm{d} x}{\mathrm{~d} t}=x \ln 2=2^{t} \ln 2$
(b) $x=2^{t}, y=3 t^{2}$
$\frac{\mathrm{d} x}{\mathrm{~d} t}=2^{t} \ln 2, \frac{\mathrm{~d} y}{\mathrm{~d} t}=6 t$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 t}{2^{t} \ln 2}$
(c) At the point $(2,3), t=1$.

The gradient of the curve at $(2,3)$ is $\frac{6}{2 \ln 2}$.
\therefore the equation of the tangent is

$$
\begin{aligned}
& y-3=\frac{6}{2 \ln 2}(x-2) \\
& \text { i.e. } y=\frac{3}{\ln 2} x-\frac{6}{\ln 2}+3
\end{aligned}
$$

The tangent meets the x-axis when $y=0$.
$\therefore \frac{3}{\ln 2} x=\frac{6}{\ln 2}-3$
$\therefore x=2-\ln 2=1.307$ (3 decimal places)
© Pearson Education Ltd 2009

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise F, Question 20

Question:

(a) Given that $a^{x} \equiv \mathrm{e}^{k x}$, where a and k are constants, $a>0$ and $x \in \mathbb{R}$, prove that $k=\ln a$.
(b) Hence, using the derivative of $\mathrm{e}^{k x}$, prove that when $y=2^{x}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=2^{x} \ln 2$.
(c) Hence deduce that the gradient of the curve with equation $y=2^{x}$ at the point $(2,4)$ is $\ln 16$.

E

Solution:

(a) $a^{x}=\mathrm{e}^{k x}$

Take lns of both sides:
$\ln a^{x}=\ln \mathrm{e}^{k x}$
i.e. $x \ln a=k x$

As this is true for all values of $x, k=\ln a$.
(b) Therefore, $2^{x}=\mathrm{e}^{\ln 2 \times x}$

When $y=2^{x}=\mathrm{e}^{\ln 2 \times x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\ln 2 \mathrm{e}^{\ln 2 \times x}=\ln 2 \times 2^{x}$
(c) At the point (2, 4), $x=2$.
\therefore the gradient of the curve is

$$
\begin{aligned}
& 2^{2} \ln 2 \\
& =4 \ln 2 \\
& =\ln 2^{4} \quad(\text { property of } \operatorname{logs}) \\
& =\ln 16
\end{aligned}
$$

Solutionbank
 Edexcel AS and A Level Modular Mathematics

Differentiation

Exercise F, Question 21

Question:

A population P is growing at the rate of 9% each year and at time t years may be approximated by the formula
$P=P_{0}(1.09)^{t}, t \geq 0$
where P is regarded as a continuous function of t and P_{0} is the starting population at time $t=0$.
(a) Find an expression for t in terms of P and P_{0}.
(b) Find the time T years when the population has doubled from its value at $t=0$, giving your answer to 3 significant figures.
(c) Find, as a multiple of P_{0}, the rate of change of population $\frac{\mathrm{d} P}{\mathrm{~d} t}$ at time $t=T$. \boldsymbol{E}

Solution:

(a) $P=P_{0}(1.09)^{t}$

Take natural logs of both sides:
$\ln P=\ln \left[P_{0}(1.09)^{t}\right]=\ln P_{0}+t \ln 1.09$
$\therefore t \ln 1.09=\ln P-\ln P_{0}$
$\Rightarrow \quad t=\frac{\ln P-\ln P_{0}}{\ln 1.09} \quad$ or $\quad \frac{\ln \left(\frac{P}{P_{0}}\right)}{\ln 1.09}$
(b) When $P=2 P_{0}, t=T$.
$\therefore T=\frac{\ln 2}{\ln 1.09}=8.04$ (to 3 significant figures)
(c) $\frac{\mathrm{d} P}{\mathrm{~d} t}=P_{0}(1.09)^{t} \ln 1.09$

When $t=T, P=2 P_{0}$ so $(1.09)^{T}=2$ and

$$
\begin{aligned}
\frac{\mathrm{d} P}{\mathrm{~d} t} & =P_{0} \times 2 \times \ln 1.09 \\
& =\ln \left(1.09^{2}\right) \times P_{0}=\ln (1.1881) \times P_{0} \\
& =0.172 P_{0} \text { (to } 3 \text { significant figures) }
\end{aligned}
$$

© Pearson Education Ltd 2009

